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Abstract This paper presents two linear cutting plane algorithms that refine existing
methods for solving disjoint bilinear programs. The main idea is to avoid constructing
(expensive) disjunctive facial cuts and to accelerate convergence through a tighter
bounding scheme. These linear programming based cutting plane methods search the
extreme points and cut off each one found until an exhaustive process concludes that
the global minimizer is in hand. In this paper, a lower bounding step is proposed
that serves to effectively fathom the remaining feasible region as not containing a
global solution, thereby accelerating convergence. This is accomplished by minimiz-
ing the convex envelope of the bilinear objective over the feasible region remaining
after introduction of cuts. Computational experiments demonstrate that augmenting
existing methods by this simple linear programming step is surprisingly effective at
identifying global solutions early by recognizing that the remaining region cannot con-
tain an optimal solution. Numerical results for test problems from both the literature
and an application area are reported.

Keywords Linear programming · Bilinear programming · Cutting plane ·
Polar cuts · Lower bounding

X. Ding
Department of Information Technology and Media, Mid-Sweden University, 85170 Sundsvall,
Sweden
e-mail: dingxiaosong@bfsu.edu.cn

Present Address:
X. Ding (B)
School of International Business, Beijing Foreign Studies University 100089, Beijing, P.R.China
e-mail: dingxiaosong@bfsu.edu.cn

F. Al-Khayyal
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,
GA 30332-0205, USA
e-mail: faiz.alkhayyal@isye.gatech.edu



422 J Glob Optim (2007) 38:421–436

1 Introduction

An important class of hard non-convex programs that has many applications is the
bilinear program (BLP) with disjoint constraints [5,8,14,16,17,22]. Mathematically, a
disjoint BLP problem can be stated as

min f (x, y) = ctx+ dty+ xtCy,
s.t.x ∈ X0 = {x ∈ Rn1 : A1x = b1, x ≥ 0},

y ∈ Y0 = {y ∈ Rn2 : A2y = b2, y ≥ 0},
(1)

where X0 and Y0 are bounded polyhedral sets.
Several previous studies [1,5,11,13,27] have investigated the structural properties

of (1), and many solution approaches have been proposed. Concavity cuts [24] were
utilized in several early cutting plane algorithms [10,13]. The question of convergence
was investigated by several authors (e.g., [11,31]), and this was finally settled in the
affirmative [18]. Nevertheless, it has been shown that concavity cuts are uniformly
dominated by polar cuts which have been employed in other cutting plane methods
[7,21,28]. In general, cutting plane methods converge slowly near an optimal solution
because successive cuts become nearly parallel thereby eliminating only a very small
part of the feasible region in each iteration [11,26].

Another solution strategy for bilinear programming is branch and bound. Many
such methods have been developed for solving both disjoint and jointly constrained
BLP [1,2,6,9,20]. In general, branch and bound procedures take a long time to ver-
ify that an incumbent solution is actually the global optimum. Other less common
approaches include methods based on an annexation strategy, linear complementar-
ity problems and linear max–min reformulations [12,23,27,29,30]. More recently, [4]
proposed a method that combines concavity cuts with the branch and bound procedure
developed in [6]. This method first uses concavity cuts to reduce the feasible region
of (1), and then it carries out the branch and bound method over the reduced feasible
region. Unlike the traditional cutting plane methods, this method adds concavity cuts
to both X0 and Y0, thereby making the computational load heavier than would be the
case if cuts were generated for only one polyhedron, say, X0. Comprehensive studies
about BLP can be found in [11,25,26].

In this paper, we develop two procedures that combine the generation of polar
cuts with the computation of lower bounds, using the technique proposed in [1,2], to
achieve fast convergence. The next section describes how the existing cutting plane
methods are both modified and augmented to accelerate convergence. In particular,
our refinement avoids the (computationally expensive) construction of disjunctive
face cuts and only generates polar cuts. Combining this change with our lower bound-
ing techniques preserves convergence and leads to measurable speedups in conver-
gence. This is illustrated in Sect. 3 by numerical experiments which clearly show the
advantages of incorporating the bounding step into the procedure.

2 Optimization

To solve the disjoint BLP program, global optimization strategies will be used. A
general framework is to iterate between a global (bounding) phase of systemati-
cally exploring the feasible region, subset by subset and a local (improvement) phase
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designed to determine a local optimizer starting from an approximate solution [11,
26]. As will be demonstrated later, the two global optimization algorithms described
herein capture the spirit of this framework and find either an exact global minimizer
or an epsilon-global minimizer, with a pre-specified epsilon-tolerance on the opti-
mal objective value. Moreover, it is also possible to stop at any feasible point with a
known worst case error bound on how far the incumbent solution is away from global
optimality as measured by objective value difference.

The most important property of a disjoint BLP is that, even though f (x, y) may not
be quasi-concave, there exists an extreme point x ∈ X0 and an extreme point y ∈ Y0
such that (x, y) is an optimal solution of problem (1) (see, e.g., [1,11,13]).

2.1 Local optimization

The solution property and the structure of a disjoint BLP program itself suggest
a linear programming (LP) based vertex following algorithm that converges to a
Karush–Kuhn–Tucker point [13].

Definition 1 Consider P : min f (x) subject to x ∈ S, where S is a compact polyhedral
set and f is non-convex. A local star minimizer (LSM) of P is defined as a point x such
that f (x) ≤ f (x) for each x ∈ NS(x), where NS(x) denotes the set of extreme points in
S that are adjacent to x.

For a disjoint BLP, an extreme point is adjacent to (x, y) if and only if it is of the
form either (xi, y) or (x, yi), where xi ∈ NX0(x) and yi ∈ NY0(y).

Definition 2 An extreme point (x, y) is called a pseudo-global minimizer (PGM) if
f (x, y) ≤ f (x, y) for each x ∈ Bδ(x) ∩X0 and for each y ∈ Y0, where Bδ(x) is a δ

neighbourhood around x.

An LP based procedure to obtain a PGM is the following [13].

Local Optimization Algorithm 1 (LOA1):

(1) Find a feasible extreme point x̃1 in Xi
0, where Xi

0 represents the reduced feasible
region in ith iteration after all cuts have been added.

(2) [a] Solve: min{f (̃x1, y)|y ∈ Y0}, to yield an optimal ỹ1;
[b] Solve: min{f (x, ỹ1)|x ∈ X0}, to yield an optimal x̃2;
Set x̃1 ← x̃2 and repeat step (2) until it converges to an LSM (x, y).

(3) Suppose x is non-degenerate and let x̂ ∈ N(x) be such that

f (x̂, ŷ) = min
y∈Y0

f (x̂, y) < min
y∈Y0

f (x, y) = f (x, y).

If no such point exists, terminate with (x, y) as a PGM.
(4) Go to step (2[b]) with ỹ1 ← ŷ.

The LOA1 can be easily implemented, but it does not discriminate between the
extreme points belonging to the original feasible region X0, and those induced by the
added cuts. But to solve (1), we should endeavor to reach an extreme point of X0,
which appears rather difficult [11].
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However, we appeal to the efficient face identification routine (EFIR) [15] for
this purpose. The key idea is to identify the extreme faces of X0 relative to the cuts.
Suppose s cuts, Dx ≤ d, have been added to X0 and let the set of feasible points be
Q = {x ∈ Rn1 : Dx+ Ixs = d, xs ≥ 0}, where xs denotes the vector of slack variables
{xn1+1, . . . , xn1+s}t and I denotes an identity matrix.

Definition 3 Let X0 be a convex subset in Rn1 . A non-empty subset F of X0 is called
a (proper) face of X0 if there exists a supporting hyperplane H of X0 such that
F = X0 ∩H.

Now let N = {1, . . . , n1} denote the index set of the original set of variables (key
variables), and let S = {n1+1, . . . , n1+s} denote the index set of the slack variables of
the s cuts (non-key variables). For a subset Z ⊂ N, let FZ = {x ∈ X0 : xj = 0 for j ∈ Z}.

Definition 4 Let FZ be a face of X0 such that FZ ∩Q �= ∅. Then FZ is an extreme face
of X0 relative to Q if for each k ∈ N, x ∈ FZ∪k �= FZ implies x /∈ Q.

Given a set Z0 ⊂ N, an extreme face of X0 can be identified by sequentially add-
ing indices to the set Z0 subject to a revision of the basis entry rule in the simplex
method as “only a non-key variable xj, j ∈ S, is eligible to enter the basis.” It has been
proved that this procedure either finds an extreme face or indicates that no such face
exists [15].

Definition 5 Let Q be the region feasible to the s cuts generated so far and let (x, y)

be an extreme point of X0 × Y0 such that x ∈ Q and miny∈Y0 f (x, y) = f (x, y). Con-
sider a basis B of (1) representing x. Then (x, y) is said to be a weak pseudo-global
minimum (WPGM) relative to the basis B if for each x̂ ∈ N(x) such that x̂ ∈ Q, we
have miny∈Y0 f (x̂, y) ≥ f (x, y).

Given a simplex tableau representing a non-degenerate extreme point xe of X0. If
xe ∈ Q, the set N(xe) ∩Q can be readily obtained from the current tableau as points
resulting from single pivots which involve the exchange of a key variable for another
key variable.

Local Optimization Algorithm 2 (LOA2) Let k = 0.

(1) Let x̂ ∈ N(xk) ∩Q be such that

min
y∈Y0

f (x̂, y) < min
y∈Y0

f (xk, y) = f (xk, yk).

If no such point exists, terminate with (x, y) = (xk, yk) as a WPGM.
(2) Increase k by 1 and go to step (1) with xk+1 = x̂.

The difference between LOA1 and LOA2 lies in that LOA2 tries to restrict the
search to the extreme points in X0 that are feasible to the added cuts rather than to
the whole set of extreme points in Xi

0.
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2.2 Global optimization

2.2.1 Cutting plane methods

Given a PGM or WPGM located by LOA1 or LOA2, respectively, we employ polar
cuts to cut off local vertex solutions.

Assume x is a non-degenerate extreme point of X0; let p = n1 −m, where m is the
number of rows in A1 in (1); and let xj, j ∈ N, be the p non-basic variables at x, where
N is the index set for the non-basic variables. Then X0 has precisely p distinct edges
incident to x. Each half line ξ j = {x : x = x− ajλj, λj ≥ 0}, j ∈ N, contains exactly one
such edge [7].

Definition 6 The generalized reverse polar of Y0 for a given scalar α is given by
Y0(α) = {x : f (x, y) ≥ α} for all y ∈ Y0.

Let (x, y) be a PGM or WPGM, let the rays ξ j be defined as above, let α be the
current best objective value (CBOV) of f (x, y), and let λj be defined by

λj =
{

max{λj : f (x− ajλj, y) ≥ α for all y ∈ Y0} if ξ j �⊂ Y0(α),
−max{λj : f (x+ ajλj, y) ≥ α for some y ∈ Y0} if ξ j ⊂ Y0(α).

Then the inequality
∑

j∈N xj/λj ≥ 1 determines a valid cutting plane [21,28]. Each λj

can be computed by an efficient modification of Newton’s method [21].
We are now ready to present two established pure cutting plane algorithms which

adopt LOA1 and LOA2, respectively. There are three common stopping criteria.

Terminating Rules for Pure Cutting Plane Methods (TRP):

(a) There exists no λj such that ξ j �⊂ Y0(α);
(b) There exists λj such that ξ j �⊂ Y0(α), but there also exists λj = 0 such that

ξ j ⊂ Y0(α);
(c) Xi

0 = ∅.

The TRP (a) and TRP (b) are stopping criteria induced by polar cuts, and TRP (c)
is the stopping criterion for any cutting plane algorithm. In the following algorithms,
obji represents the CBOV in ith iteration.

Algorithm 1 (Alg1)

(1) Let obj0 = +∞ and {(x̂0, ŷ0)} = ∅; let an epsilon tolerance, ε, be a prescribed
small positive number; set i = 1 and Xi

0 = X0.
(2) If TRP (c) is satisfied, terminate with obji−1 as the global minimum and (x̂i−1, ŷi−1)

as the corresponding global minimizer.
(3) Find a PGM (xi, yi) by using LOA1 with X0 ← Xi

0; change obji and (x̂i, ŷi) by
setting obji = min{obji−1, f (xi, yi)} and (x̂i, ŷi) = argmin{obji−1, f (xi, yi)}, respec-
tively.
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(4) Use the modification of Newton’s procedure [21] to obtain λj, j ∈ N; generate an
appropriate polar cut; define Xi+1

0 = Xi
0 ∩H+(xi), where H+(xi) is the feasible

half space defined by cutting off xi

(5) If either TRP (a) or TRP (b) is satisfied, terminate with obji as the global mini-
mum and (x̂i, ŷi) as the corresponding global minimizer.

(6) Set i← i+ 1 and return to (2).

In Alg1, we separate steps (2) and (5) for the three terminating conditions even
though they could be checked within one step. The reason is that we do not know
whether TRP (a) or (b) is true before we generate the first polar cut.

Algorithm 2 (Alg2)

(1) Find a PGM (x0, y0) by using LOA1; set obj0 = f (x0, y0); set (x̂0, ŷ0) = (x0, y0);
let an epsilon tolerance, ε, be a prescribed small positive number; set i = 1 and
Xi

0 = X0.
(2) Use the modification of Newton’s procedure [21] to obtain λj, j ∈ N; generate

an appropriate polar cut; define Xi+1
0 = Xi

0 ∩H+(xi).
(3) If either TRP (a) or (b) is satisfied, terminate with obji−1 as the global minimum

and (x̂i−1, ŷi−1) as the corresponding global minimizer.
(4) Apply EFIR [15] in an attempt to find a vertex of X0 that satisfies all cuts

generated thus far.
I. If TRP (c) is satisfied, terminate with obji−1 as the global minimum and

(x̂i−1, ŷi−1) as the corresponding global minimizer.
II. If the point found by EFIR is an extreme point of X0 feasible to the cuts,

locate a WPGM by using LOA2.
III. If the point found by EFIR is not an extreme point of X0 feasible to the

cuts, locate a PGM by using LOA1 with X0 ← Xi
0.

For Cases II and III, set obji = min{obji−1, f (xi, yi)} and (x̂i, ŷi) = argmin{obji−1,
f (xi, yi)}, respectively.

(5) Set i← i+ 1 and return to (2).

In Alg2, we use LOA1 to locate a PGM in step (1) because every PGM is a WPGM
at this stage. When EFIR fails to indicate that the current point is a proper extreme
point in X0 feasible to the added cuts (i.e., not all non-basic variables are key vari-
ables), we do not turn to the generation of disjunctive cuts as in [21] due to the
heavy computational burden. Intuitively, in a cutting plane procedure, EFIR should
be effective in early stages and gradually appear inefficient because of the increasing
number of extreme points induced by the cuts and the decreasing number of extreme
points in X0 removed by the cuts. Therefore, in order to generate only inexpensive
cuts, our approach makes use of EFIR and LOA2 whenever possible. When EFIR
fails to locate a vertex of X0, we fall back to LOA1 and continue to generate a polar
cuts.

A global solution found by Alg1 and Alg2 cannot be confirmed until all remaining
inferior extreme points of X0 are cut off. Consequently, the basic idea is to repeat-
edly calculate a tight, but inexpensive, lower bound on the global optimum. Then at
least we can tell how close the CBOV is to global optimality at any time during an
exhaustive search process.
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2.2.2 Arithmetic intervals

Consider xtBy over the compact hyper-rectangle � = {(x, y) : l ≤ x ≤ L, m ≤ y ≤M}.
Define �ij = {(xi, yj) : li ≤ xi ≤ Li, mj ≤ yj ≤ Mj}. In [1, 2], the convex and concave
envelopes of xiyj over �ij have been shown to be

Vex�ij [xiyj] = max{mjxi + liyj − limj, Mjxi + Liyj − LiMj},
Cav�ij [xiyj] = min{Mjxi + liyj − liMj, mjxi + Liyj − Limj}. (2)

Given a bounded disjoint BLP problem, for an entry with bij > 0 in the bilinear
term xtBy, we compute its convex envelope as Vex[bijxiyj] = bijVex[xiyj]. For an entry
with bij < 0, we compute the concave envelope as Cav[|bij|xiyj] = |bij|Cav[xiyj]. Then
we can say

f (x, y) = ctx+ dty+ xtCy
= ctx+ dty+∑

bijxiyj
= ctx+ dty+ ∑

bij>0
bijxiyj − ∑

bij<0
|bij|xiyj

≥ ∑

bij>0
Vex[bijxiyj] − ∑

bij<0
Cav[|bij|xiyj].

(3)

We use (3) to underestimate the optimal value of (1) over subsets of the feasi-
ble region that are in �. An important computational observation is that the tighter
the lower and upper bounds imposed over xi and yj, the higher the underestimation
generated by (3) over the partition set. Observe that minimizing

∑

(i,j) Vex�ij [xiyj] is
equivalent to minimizing

∑

(i,j) tij subject to the two additional constraints for each (i, j)

tij ≥ mjxi + liyj − limj,
tij ≥Mjxi + Liyj − LiMj

and minimizing
∑

(i,j){−Cav�ij [xiyj]} is equivalent to minimizing
∑

(i,j) tij subject to

tij ≥ liMj −Mjxi − liyj,
tij ≥ Limj −mjxi − Liyj.

2.3 Mixed strategies

Six stopping rules have to be specified for the two improved cutting plane algorithms,
in which boundi represents the lower underestimation over Xi

0 in the ith iteration.

Terminating Rules for Improved Cutting Plane Methods (TRI):

(a) boundi > obji−1;
(b) |boundi − obji−1| ≤ ε;
(c) |boundi − obji| ≤ ε;
(d) Xi

0 = ∅;
(e) There exists no λj such that ξ j �⊂ Y0(α);
(f) There exists λj such that ξ j �⊂ Y0(α), but there also exists λj = 0 such that

ξ j ⊂ Y0(α).
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The TRIs (a), (b) and (c) are stopping rules induced by the lower bounding tech-
nique, and the other three (d) through (f) are the same as those in TRP. Terminating
with TRI (b) or TRI (c) yields an epsilon-global minimum, while terminating with the
other rules finds the exact global minimum. Incorporating the lower bounding tech-
nique and the stopping rules into Alg1 and Alg2, we obtain two global optimization
algorithms Alg3 and Alg4 which improve on Alg1 and Alg2, respectively. These are
summarized below.

Algorithm 3 (Alg3)

(1) Let obj0 = +∞ and {(x̂0, ŷ0)} = ∅; let an epsilon tolerance, ε, be a prescribed
small positive number; set i = 1 and Xi

0 = X0.
(2) Update (or calculate directly for i = 1) the lower and upper bounds for each

variable; compute the underestimation, boundi, for Xi
0.

(3) If either TRIs (a), or (b), or (d) is satisfied, terminate with obji−1 as the global
minimum and (x̂i−1, ŷi−1) as the corresponding global minimizer.

(4) Find a PGM (xi, yi) by using LOA1 with X0 ← Xi
0; change obji and (x̂i, ŷi) by

setting obji = min{obji−1, f (xi, yi)} and (x̂i, ŷi) = argmin{obji−1, f (xi, yi)}, respec-
tively.

(5) If TRI (c) is satisfied, terminate with obji as the global minimum and (x̂i, ŷi) as
the corresponding global minimizer.

(6) Use the modification of Newton’s procedure [21] to obtain λj, j ∈ N; generate
an appropriate polar cut; define Xi+1

0 = Xi
0 ∩H+(xi).

(7) If either TRI (e) or (f) is satisfied, terminate with obji as the global minimum
and (x̂i, ŷi) as the corresponding global minimizer.

(8) Set i← i+ 1 and return to (2).

Algorithm 4 (Alg4)

(1) Find a PGM (x0, y0) by using LOA1; set obj0 = f (x0, y0); set (x̂0, ŷ0) = (x0, y0);
let an epsilon tolerance, ε, be a prescribed small positive number; set i = 1 and
Xi

0 = X0.
(2) Update (or calculate directly for i = 1) the lower and upper bounds for each

variable; compute the underestimation, boundi, for Xi
0.

(3) If TRIs (a) or (b) is satisfied, terminate with obji−1 as the global minimum and
(x̂i−1, ŷi−1) as the corresponding global minimizer.

(4) Use the modification of Newton’s procedure [21] to obtain λj, j ∈ N; generate
an appropriate polar cut; define Xi+1

0 = Xi
0 ∩H+(xi).

(5) If either TRI (e) or TRI (f) is satisfied, terminate with obji−1 as the global
minimum and (x̂i−1, ŷi−1) as the corresponding global minimizer.

(6) Try to find a starting point by using EFIR [15].
I. If TRI (d) is satisfied, terminate with obji−1 as the global minimum and

(x̂i−1, ŷi−1) as the corresponding global minimizer.
II. If the point is actually an extreme point in X0 feasible to the cuts, locate a

WPGM by using LOA2.
III. If the point is not an extreme point in X0 feasible to the cuts, locate a PGM

by using LOA1 with X0 ← Xi
0.

For Cases II and III, set obji = min{obji−1, f (xi, yi)} and (x̂i, ŷi) = argmin{obji−1,
f (xi, yi)}, respectively.
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(7) If TRI (c) is satisfied, terminate with obji as the global minimum and (x̂i, ŷi) as
the corresponding global minimizer.

(8) Set i← i+ 1 and return to (2).

The convergence proof for Alg3 is provided below. With some minor modifications,
the convergence proof for Alg4 can be readily obtained.
Convergence proof (Alg3) First, note that LOA1 is finite so step (4) in Alg3 yields
exact solutions. Consider the sequence of PGMs {(xi, yi)} generated and let H(xi) be
the cutting plane that eliminates xi. In step (7) of iteration i, the algorithm is ter-
minated as the consequence of introducing polar cuts. In step (6) of iteration i, the
algorithm is terminated if Xi

0 ∩H+(xi) = ∅ (actually detected in step (3) of iteration
i+ 1). Otherwise, the cut H(xi) is applied and a new PGM (xi+1, yi+1) is found where
xi+1 ∈ Xi

0 ∩H+(xi) and xi �∈ H+(xi). For ε > 0, it is possible for the process not to
terminate by any of the six rules TRI(a) through TRI(f). An infinite sequence would
then be generated, and we need to show that the sequence {xi} has a limit point x∗
such that limi→∞Xi

0 ∩H+(xi) = ∅.
Since X0 is a compact set, there exists a limit point x∗ such that for a given ε ≥ 0

and a positive integer ν, ‖xi − x∗‖≤ ε for infinitely many i ≥ ν. If Xi
0 ∩ H+(xi) �= ∅

for all i ≥ ν, then all subsequent PGMs (xl, yl) generated will satisfy the condition
xl ∈ H+(xν) for all l ≥ ν + 1. From the definition of a PGM, x∗ ∈ Bδ(x∗) ∩X0 and
xl �∈ Bδ(x∗) for some δ > 0. Hence, ‖xl − x∗‖≥ δ for all l ≥ ν + 1. This contradicts the
statement that x∗ is a limit point. Therefore, limi→∞Xi

0 ∩H+(xi) = ∅ and the cutting
plane algorithm is terminated.
Finite convergence The above convergence proof is essentially that for the pure cut-
ting plane method Alg1 if Alg3 does not terminate finitely; (see [21,28]). In Alg3, the
introduction of the comparison between obji or obji−1 and the underestimation of
the optimal objective value simply accelerate termination and do not affect overall
convergence in the limit. The two ways the algorithm terminates in a finite number of
steps to an epsilon-optimal solution are described below. Moreover, when the global
solution is unique, the incorporation of an additional step will guarantee convergence
to an exact optimal solution in a finite number of steps.

I In step (3), if boundi > obji−1 is satisfied, then, in the reduced feasible region, we
cannot find a PGM with objective value better than CBOV. Hence, Alg3 termi-
nates after finitely many iterations with an exact global minimizer (x̂i−1, ŷi−1).

II In step (3), respectively, step (5), if either |boundi − obji−1| ≤ ε, respectively,
|boundi − obji| ≤ ε, is satisfied, then the absolute difference between the objec-
tive value of the best feasible solution we have found and a lower bound on
the global minimum is within a prescribed tolerance. Then Alg3 terminates in
finitely many iterations with an epsilon-global minimizer (x̂i−1, ŷi−1) in step (3),
respectively (x̂i, ŷi) in step (5).

III Finite convergence to a unique global minimizer can be guaranteed by introduc-
ing an additional step which requires the periodic solution of a linear program.
This can be achieved by appealing to the result in [3,19]: if {zk} ⊂ S satisfies
zk → z∗ and−∇ϕ(z∗) ∈ intN (z∗), where intN (z∗) is the interior of the normal
cone of convex set S at z∗, then there is a positive integer K such that for all
k > K, the limit point x∗ solves the convex program min{∇ϕ(zk)tz : z ∈ S}. If
we set ε = 0 and Alg3 does not terminate in step (3), then let us assume that
it converges to a unique limit point; i.e., we have (x̂i, ŷi)→ (x∗, y∗). Moreover,
(x∗, y∗) is an extreme point of X0×Y0 so that intN (x∗, y∗) �= ∅, where N (x∗, y∗)
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is the normal cone of X0×Y0 at (x∗, y∗), and−∇f (x∗, y∗) ∈ intN (x∗, y∗) by virtue
of uniqueness of (x∗, y∗). It follows that (x∗, y∗) solves the linear program

min f (x, y) = (c+ Cŷi)tx+ (d+ Cx̂i)ty,
s.t. x ∈ Xi

0 = Xi−1
0

⋂

H+(xi−1),
y ∈ Y0

(4)

for all i > K for some K. Hence, modifying step (5) of Alg3 to include solving
linear program (4) will generate a sequence of solutions {(x̃i, ỹi)}. If boundi ≥
f (x̃i, ỹi) then terminate with global minimizer (x̃i, ỹi). If f (x̃i, ỹi) ≤ obji, then
we may set our current best feasible solution to (x̂i, ŷi) ← (x̃i, ỹi) and set
obji ← f (x̃i, ỹi). This extra linear program can be solved periodically; say, every
τ iterations. For iterations i = τ , 2τ , 3τ , . . . , set xi ← x̃i and proceed to step (6)
to cut x̃i from Xi

0. For some finite ν, sufficiently large, we must have xν = x∗
which would be cut off, so that obji = obj∗ for all i > ν. Therefore, since
boundi+1 ≥ boundi by virtue of Xi+1

0 ⊂ Xi
0, it follows that for sufficiently large

finite i we must have boundi > obj∗ and Alg3 terminates. ��
In the worst case, the number of iterations for Alg3 or Alg4 will be equivalent to

that of the corresponding pure cutting plane algorithm. Nonetheless, according to our
numerical experiments, we observe this kind of situation seldom happens because
actually the lower bounding technique always takes effect; i.e. one of the rules TRI(a)
through TRI(c) stops the solution process.

3 Numerical example

Example 1 (Ex1)

min

[

1
−1

]t [ x1
x2

]

+
[−1

0

]t [ y1
y2

]

+
[

x1
x2

]t [−2 1
1 −2

] [

y1
y2

]

,

s.t.

⎡

⎣

1 4
4 1
3 4

⎤

⎦

[

x1
x2

]

≤
⎡

⎣

8
12
12

⎤

⎦ ,

⎡

⎣

2 1
1 2
1 1

⎤

⎦

[

y1
y2

]

≤
⎡

⎣

8
8
5

⎤

⎦ ,

x1, x2, y1, y2 ≥ 0.

In Ex1, there are four PGMs located by Alg1 and three WPGMs located by Alg2,
respectively. Accordingly, Alg1 cannot terminate until step (2) in the fifth iteration,
while Alg2 stops running at step (4.I) in the third iteration. TRP (c) is satisfied for
both of them. Nevertheless, by incorporating the lower bounding technique, both algo-
rithms can be terminated before X0 is exhausted; i.e., before all extreme points are
cut off. Detailed computational results are shown in Table 1, in which Iter represents
the iteration index.

As noted in Table 1, the lower bounding technique generates a tight underestima-
tion achieving the global minimum −25.0000. Both Alg3 and Alg4 require two fewer
iterations than Alg1 and Alg2, respectively, with Alg3 stopping in the second iteration
of step (5) Alg4 stopping in the first iteration of step (7).
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Table 1 Results for example 1

Iter Alg1 Alg3 Alg2 Alg4

obj obj bound obj obj bound

0 – – – −18.0000 −18.0000 –
1 −18.0000 −18.0000 −25.0000 −25.0000 −25.0000 −25.0000
2 −25.0000 −25.0000 −25.0000 −4.0000
3 −18.1707
4 −12.1935

Example 2 (Ex2)
In (1), c = d = 0, b1 = b2 = [10, 10, 10, 10]t and

C =

⎡

⎢

⎢

⎣

−3 1 0 1
1 −4 2 0
0 2 −4 1
1 0 1 −3

⎤

⎥

⎥

⎦

, A1 = A2 =

⎡

⎢

⎢

⎣

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

⎤

⎥

⎥

⎦

,

x1, x2, x3, x4, y1, y2, y3, y4 ≥ 0.

The Ex2 has two global minimizers with the objective value−25.0000. Unlike Ex1,
this time the lower bounding technique generates a relatively loose underestimation.
Alg1 stops at step (2) in the eighth iteration, while Alg2 stops at step (4.I) in the sixth
iteration. The TRP (c) is satisfied for both of them. Detailed computational results
are shown in Table 2.

The underestimation starts with the value -35.0000, which is relatively far from
the global minimum as compared with Ex1. It is gradually improved in the following
several iterations. Finally, Alg3 stops at step (3) in the fourth iteration with TRI (a)
satisfied, thereby saving four iterations over Alg1. The Alg4 stops at step (3) in the
fourth iteration with TRI (a) satisfied, which saves iterations over Alg2. As observed
in Table 2, the two global minimizers are located at a very early stage, and a pure
cutting plane method like Alg1 or Alg2 will continue to perform the cutting proce-
dure until X0 is exhausted. However, these algorithms can be terminated earlier by
embedding our proposed lower bounding technique.

Table 2 Results for example 2

Iter Alg1 Alg3 Alg2 Alg4

obj obj bound obj obj bound
0 – – – −25.0000 −25.0000 –
1 −25.0000 −25.0000 −35.0000 −25.0000 −25.0000 −35.0000
2 −25.0000 −25.0000 −31.7301 −18.7500 −18.7500 −31.7301
3 −18.7500 −18.7500 −27.4695 −18.7500 −18.7500 −27.4695
4 −18.7500 −18.7500 −24.6436 0 0 −24.6436
5 −15.2439 −5.5302
6 −15.2174
7 −9.5459
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Table 3 Alg3 against Alg1 (literature)

ε = 0.0001

Prob Size Cons Alg1 Alg3

nx ny cx cy a b c d a b c d

Ex1 5 2 3 3 4 2 1 0.452 1 2 1 0.361
Ex2 8 4 4 4 7 1 2 1.423 3 1 2 1.222
[2] 10 5 5 5 1 1 1 0.190 1 1 1 0.510
[10] 6 2 4 4 2 2 1 0.250 2 2 1 0.360
[13] 5 2 3 3 4 2 1 0.410 1 2 1 0.310
[13]×6 12 6 6 6 20 1 6 5.619 13 1 6 7.592
[13]×7 14 7 7 7 56 1 7 17.903 29 1 7 24.713
[13]×8 16 8 8 8 68 1 8 24.816 25 1 8 22.040
[13]×9 18 9 9 9 – 1 9 – 79 1 9 165.336
[13]×10 20 10 10 10 – 1 10 – – 1 10 –
[21] 7 2 5 3 2 2 1 0.220 2 2 1 0.570

Prob : problem index,
Size : the number of variables in X0 and Y0,
Cons : the number of constraints in X0 and Y0,
a : the number of added cuts,
b : the iteration within which the global optimum is first touched,
c : the number of identified global optima,
d : solution time,
– : an unsolved problem when solution time exceeds 1,200 s

4 Computational experience

The two proposed enhanced cutting plane methods have been extensively tested
against the two corresponding pure cutting plane methods using test problems from
both the literature and from a class of applications. All experiments are conducted on
a personal computer with Windows 2000, Matlab 6.5, Pentium-III 1,000 MHz CPU
and 512 MB memory. The SQOPT is adopted to solve LP subproblems.

The test problems in Table 3 are taken from different references as indicated in
the first column. It can be observed that for very small BLP problems, Alg1 and Alg3
are rather competitive, or sometimes Alg3 is even inferior to Alg1. The reason is that
before computing the improved lower bound, we have to tighten the interval imposed
on each variable. Each such tightening process needs to solve two LP programs. Cor-
respondingly, the solution time saved from generating unnecessary cuts is balanced
by the time for tightening these intervals, and therefore the observed computational
results. However, as the size of a problem grows, the performance of Alg1 and Alg3
will be approaching and finally, Alg3 will outperform Alg1 by a very large factor. This
effect can be observed from prob [13]×6 to prob [13] ×10 with

Cm×m =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−2 1 0 . . . 0 0
1 −2 1 . . . 0 0

0 1 −2
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . .

. . . 1
0 0 0 . . . 1 −2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
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Am×m
1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 2 . . . m− 1 m
2 3 . . . m 1
...

...
...

...
...

m− 1 m . . . m− 3 m− 2
m 1 . . . m− 2 m− 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= Am×m
2 ,

cm = dm = 0,
bm

1 = bm
2 = [m(m+ 1)/2, . . . , m(m+ 1)/2]t,

x1, . . . , xm, y1, . . . , ym ≥ 0.

Each problem has m local minimizers with equal objective values, and actually
all of them are global minimizers. The computational load appears relatively heavy
because the improved cutting plane algorithm cannot make much progress before all
global optimizers are cut off. We observe that for prob [13]×6 and prob [13]×7, Alg1
is even superior to Alg3. Nevertheless, Alg3 begins to outperform Alg1 from prob
[13]×8 even though neither of them can terminate within 1,200 s for prob [13]×10.
The effect of having no knowledge about the global optimum becomes apparent due
to the numerous cuts to be generated by Alg1.

In Table 4, detailed computational results for the comparisons between Alg2 and
Alg4 are provided. By comparing Table 4 with Table 3, we observe that for small size
problems, Alg2 is superior to Alg3, but this is not the case for problems with larger
sizes. For example, Alg3 can solve prob [13]×9 within 165.336 s, while Alg2 cannot
solve the same problem within 1,200 s. We can also observe that Alg2 and Alg4 uni-
formly dominate Alg1 and Alg3, respectively. This fact indicates that EFIR and LOA2

Table 4 Alg4 against Alg2 (literature)

ε = 0.0001

Prob Size Cons Alg2 Alg4

nx ny cx cy a b c d a b c d

Ex1 5 2 3 3 3 1 1 0.190 1 1 1 0.170
Ex2 8 4 4 4 5 0 2 0.772 3 0 2 0.861
[2] 10 5 5 5 1 0 1 0.190 1 0 1 0.360
[10] 6 2 4 4 2 1 1 0.180 2 1 1 0.200
[13] 4 2 3 3 2 1 1 0.270 1 1 1 0.201
[13]×6 12 6 6 6 16 0 6 3.826 11 0 6 5.610
[13]×7 14 7 7 7 23 0 7 6.068 15 0 7 9.766
[13]×8 16 8 8 8 47 0 8 16.116 20 0 8 15.384
[13]×9 18 9 9 9 – 0 9 – 64 0 9 106.156
[13]×10 20 10 10 10 – 0 10 – 94 0 10 259.933
[21] 7 2 5 3 2 1 1 0.170 2 1 1 0.511

Prob : problem index,
Size : the number of variables in X0 and Y0,
Cons : the number of constraints in X0 and Y0,
a : the number of added cuts,
b : the iteration within which the global optimum is first touched,
c : the number of identified global optima,
d : solution time,
– : an unsolved problem when solution time exceeds 1,200 s
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may significantly reduce the number of cuts to be generated even though we need to
switch to LOA1 when EFIR fails as more and more cuts are added, e.g., for prob [13]×7
through prob [13]×10. Therefore, Alg4 tries to devote more computational effort in
the early stages of our improved cutting plane method when EFIR is more successful
and strive towards early termination when coupled with the underestimation routine.

The effectiveness of Alg3 and Alg4 can be further illustrated as the four cutting
plane algorithms are applied to a special type of disjoint BLP programs arising in
computational decision analysis [8], where

C2n×2n =
[

In 0
0 −In

]

, Am1×2n
1 x ≤ bm1

1 , Am2×2n
2 y ≤ bm2

2 ,

c2n = d2n = 0, 0 ≤ lxi ≤ xi ≤ ux
i ≤ 1, 0 ≤ lyi ≤ yi ≤ uy

i ≤ 1
for i = 1, . . . , 2n.

The variables x1, . . . , x2n and y1, . . . , y2n actually represent probability and utility
variables, respectively. For a decision situation where the problem index is N, it has
2n x-variables and 2n y-variables, respectively. The number of linear constraints m1
and m2 are roughly equal to that of the variables in X0 and Y0, respectively. All these
test problems for this class of applications were randomly generated.

In Table 5, the performance of Alg3 and Alg4 is quite encouraging in comparison
with the two corresponding pure cutting plane algorithms that can solve only a small
amount of test problems within 1,200 s. As for Alg3 and Alg4, it seems that the perfor-
mance of Alg3 is uniformly dominated by that of Alg4 except for the group N = 20.
In this group, we observe three out the ten test problems for which Alg3 runs much
faster than Alg4. For example, one of them takes 24.312 s by using Alg3, whereas
the computing time rises to 66.876 s for Alg4. In other groups, although this situation
happens, the impact does not appear so strong. For over 90% of these problems, Alg3
and Alg4 terminated within five cuts, which indicates the lower bounding technique
is relatively effective. Besides, EFIR and LOA2 always take effect within this small

Table 5 Comparison between four algorithms (application)

ε = 0.0001

Prob Size Cons Alg1 Alg2 Alg3 Alg4

nx ny cx cy n t n t n t n t

N=15 60 30 15 14 4 – 5 – 10 4.751 10 4.210
N=20 80 40 22 20 3 – 3 – 10 6.224 10 12.174
N=25 100 50 26 24 3 – 3 – 10 9.027 10 5.160
N=30 120 60 31 30 4 – 5 – 10 11.264 10 7.880
N=35 140 70 35 34 2 – 4 – 10 15.902 10 12.959
N=40 160 80 42 40 1 – 1 – 10 21.165 10 13.499
N=45 180 90 46 44 – – – – 10 27.867 10 18.367
N=50 200 100 51 50 – – – – 10 29.273 10 19.846

Prob : problem index,
Size : the number of variables in X0 and Y0,
Cons : the number of constraints in X0 and Y0,
n : the number of solved problems,
t : average solution time for ten problems,
– : t >1,200 s for some problems in the group
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number of generated cuts. EFIR fails for at most three instances in each group. The
number of generated cuts when EFIR begins to fail ranges from 7 to 17. Of course
this number is problem dependent. Consistent with our computational experience,
most instances in computational decision analysis are well structured for the idea of
seeking a WPGM by using EFIR and LOA2 and incorporating the lower bounding
technique to mitigate the need for an exhaustive search.
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